Remarks on a Smoluchowski Equation

نویسندگان

  • Peter Constantin
  • Ioannis Kevrekidis
  • Edriss S. Titi
چکیده

We study the long time dynamics of a Smoluchowski equation arising in the modeling of nematic liquid crystalline polymers. We prove uniform bounds for the long time average of gradients of the distribution function in terms of the nondimensional parameter characterizing the intensity of the potential. In the two dimensional case we obtain lower and upper bounds for the number of steady states. We prove that the system is dissipative and that the potential serves as unique determining mode of the system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic method for solving Smoluchowski's coagulation equation

{ This paper studies a stochastic particle method for the numerical treatment of Smoluchowski equation governing the coagulation of particles in a host gas. Convergence in probability is established for the Monte Carlo estimators, when the number of particles tends to in nity. The deterministic limit is characterized as the solution of a discrete in time version of the Smoluchowski equation. Un...

متن کامل

Diffusion influenced reactions at short times: Breakdown of the Debye–Smoluchowski description

Articles you may be interested in Short-time kinetics of an irreversible bimolecular solution reaction: Asymptotic prediction by a non-Markovian Smoluchowski approach Smoluchowski-type theory of stochastically gated diffusion-influenced reactions Geminate recombination in excitedstate protontransfer reactions: Numerical solution of the Debye–Smoluchowski equation with backreaction and compariso...

متن کامل

Dissipativity and Gevrey Regularity of a Smoluchowski Equation

We investigate a Smoluchowski equation (a nonlinear Fokker-Planck equation on the unit sphere), which arises in modeling of colloidal suspensions. We prove the dissipativity of the equation in 2D and 3D, in certain Gevrey classes of analytic functions.

متن کامل

Inertial Manifolds for a Smoluchowski Equation on the Unit Sphere

The existence of inertial manifolds for a Smoluchowski equation – a nonlinear Fokker-Planck equation on the unit sphere which arises in modeling of colloidal suspensions – is investigated. A nonlinear and nonlocal transformation is used to eliminate the gradient from the nonlinear term.

متن کامل

Global well posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D

We prove global existence for a nonlinear Smoluchowski equation (a nonlinear FokkerPlanck equation) coupled with Navier-Stokes equations in 2d. The proof uses a deteriorating regularity estimate in the spirit of [5] (see also [1]) Key wordsNonlinear Fokker-Planck equations, Navier-Stokes equations, Smoluchowski equation, micro-macro interactions. AMS subject classification 35Q30, 82C31, 76A05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003